Modeling and optimization of high temperature proton exchange membrane electrolyzer cells

نویسندگان

چکیده

Although high-temperature proton exchange membrane electrolyzer cells (HT-PEMECs) have been promising devices to store energy in recent years, the effect of certain parameters on their performance is still unclear. Therefore, a 2D multiphysics model adopted study related processes electrochemical reactions an HT-PEMEC. The validated by comparison with experimental data. Subsequently, effects applied voltage, anode water mass fraction, gas velocity, and cathode velocity are studied, trends efficiency conversion rate analyzed. Thermoneutral voltage observed through parametric study. Moreover, maximum (54.5%) obtained optimizing operating conditions. This can be regarded as foundation for subsequent control multi-objective optimization research.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and experimental study on the sealing gasket of proton exchange membrane fuel cells

In this study cross section geometry and material of gasket in proton exchange membrane (PEM) fuel cells have been investigated to achieve optimized fuel cell in terms of energy efficiency. The role of gaskets in fuel cells is sealing of gas flow channels and preventing from combination of them. In a PEM stack, gasket with approved geometry that suffers more stress has better sealing. For this ...

متن کامل

modeling and experimental study on the sealing gasket of proton exchange membrane fuel cells

in this study cross section geometry and material of gasket in proton exchange membrane (pem) fuel cells have been investigated to achieve optimized fuel cell in terms of energy efficiency. the role of gaskets in fuel cells is sealing of gas flow channels and preventing from combination of them. in a pem stack, gasket with approved geometry that suffers more stress has better sealing. for this ...

متن کامل

Preparation and Characterization of Heterogeneous PVC-Silica Proton Exchange Membrane

Heterogeneous proton exchange membranes (PEM) are synthesized using the dry phase inversion technique. The casting solutions are prepared by dispersing a finely ground cation exchange resin particle in N,N-dimethylacetamide (DMAc) solution of polyvinyl-chloride (PVC). Results show that ion exchange capacity is increased with the addition of 1 %-wt nanosilica (from 0.14 to 0.27 meq/g) while it i...

متن کامل

High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...

متن کامل

Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells

Water loss and the coincident increase in membrane resistance to proton conduction are significant barriers to high performance operation of traditional proton exchange membrane fuel cells at elevated temperatures where the relative humidity may be reduced. We report here approaches to the development of high temperature membranes for proton exchange membrane fuel cells; composite perfluorinate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Green Energy

سال: 2021

ISSN: ['1543-5083', '1543-5075']

DOI: https://doi.org/10.1080/15435075.2021.1974450